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Abstract: The approach towards system engineering compliant to Model-Driven 
Architecture (MDA) implies an increased need for research on the automation of 
the model-based test generation. This applies especially to embedded real-time 
system development where safety critical requirements must be met by a system. 
The following paper presents a methodology to derive basic Simulink test models 
from Simulink system models so as to execute them in the same framework as the 
system model. The meta-models for Simulink and Test are explained and will 
enable automatic transformation in the future. The testing concepts of UML 2.0 
Testing Profile (U2TP) have been partially adopted, however also enriched so as to 
deal with continuous functions, real-time constraints and to mirror Simulink-
specific features.  

1 Introduction 

Embedded systems development needs modelling, simulation and analysis of dynamic 
behaviour. One of the tools enabling these functionalities is Simulink [MatML] - being 
often used in the automotive industry. It supports linear and nonlinear systems, modelled 
in continuous time, sampled time or a hybrid of the two. Simulation means the execution 
of the system model. It enables the prediction of the behaviour of the system from a set 
of parameters and initial conditions. Testing, on the other side is a process of identifying 
the completeness and quality of developed software. It demands the definitions of 
system under test (SUT), test objectives, environmental constraints and test criteria. In 
the early phases of the V-Model [VML97] testing means also execution of the test 
model. This leads to a conclusion that simulation provided by Simulink, may be 
involved in testing, however test definition and test artefacts (i.e. timer actions, clocks, 
actions assigning the verdict from the outside) must be additionally provided. The tool 
offers a set of model verification blocks which enable to state if the system is build right, 
according to the requirements. Test harness can be modelled only to some extent, thus 
the motivation of the following work is to extend Simulink with additional libraries, 
features and facilities to let the generated test models be executed. The aim is to provide 
automotive industry with an integrated environment for modelling and executing system 
as well as for modelling and executing tests in one common framework. Another 
motivation is the Model-Driven Architecture (MDA) and its artefacts which can be 
adopted for testing. As MDA gained much momentum in industry, the focus is to use 
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these concepts so as to show that retrieving executable test instances from system model 
can be supported via either manual or even automatic test model generation. 
The paper is divided into five sections. After the introduction, Section 2 is devoted to the 
Simulink, Simulink Test, Environment Test Directive and Test Directive meta-models 
which should be provided behind the tools. Section 3 provides an example of retrieving 
the executable tests, which is possible by applying some restrictions during modelling. In 
Section 4 work related to test generation from system models for embedded systems in 
automotive domain is considered. In Section 5, the results are depicted and conclusions 
are drawn. Finally, future work challenges are outlined. 

2 Meta-models Behind the System and Test Designs 

MDA prescribes a set of model artefacts to be used along system development, how 
those models may be prepared and their relationships [MDA03]. It is an approach to 
system development that separates the specification of functionality from the 
specification of the implementation of that functionality on a specific technology 
platform. Meta Object Facility (MOF) [MOF04] together with MDA has shown that 
meta-model based language definitions impose new ways of defining language 
semantics as a separation of syntax and semantic concept space, of integrating languages 
via a common meta-model base and of generating and deriving models from other 
models via model transformers [SD04]. 
This paper presents an approach to test embedded systems along the MDA-based paths. 
Simulink and Test Simulink meta-models are both defined as MOF models. Test 
Directive and Environment Test Directive meta-models are created in the same manner 
so as to enhance automatic test models generation in the future work. Those additional 
meta-models serve as sources of information about test requirements and safety-critical 
requirements, respectively. Details concerning the meta-models are explained in the next 
Section. Transformation rules defined for the example in this paper are applied only 
manually. They define relations between source and target meta-classes of given meta-
models [ZDS+05]. The whole approach is shown in Figure 1.  

Figure 1: Retrieval of Simulink Test Models from Simulink Models Using the MDA Approach 

Due to lack of explicit tool supporting MOF notation, the UML notation has been 
deliberately used to visualize selected meta-models. 
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2.1 Development of the Simulink Meta-Model  

A proposal for Simulink meta-model (SL meta-model) has been developed by 
researchers from Vanderbilt University [NK04]. Although some insights of the core have 
been adopted, the following approach is slightly changed, extended and reflects more 
elements of the hierarchical, actor-oriented [Lee04] models. The meta-model defines the 
Simulink concept space with additional support for the graphical presentation format. It 
does not directly reflect the structure of Simulink models, but rather gives the semantics 
overview. It is defined in different packages with concept structures for Model, System, 
Block, Annotation, Line and Port, Parameter, Presentation, etc.  
In this paper, only excerpts from the meta-model are presented because the main focus is 
put on the integration of system and test designs. The principal building blocks of system 
specifications in Simulink are models. Every model contains a single system. A system 
may also contain blocks that are used for modelling the behaviour, lines for blocks’ 
connection or annotations used to add user’s information. Some of these blocks may be 
typed by the subsystem. A subsystem can be built in the same way as a block. Every 
subsystem contains a single system [NK04], which enables hierarchical representation of 
complex embedded systems. 

2.2 Development of the Simulink Test Meta-Model  

The Simulink Test meta-model (SLTest meta-model) is developed from scratch, 
however the experience gained from UML 2.0 Testing Profile [U2TP04] has been used. 
It defines the testing concept space with special attention put on the Simulink-specific 
features. It does not directly reflect the structure of Simulink Test models, but rather 
gives the semantics overview. It is provided in different packages with concept 
structures for Test Architecture – describing test architecture, Test Behaviour – defining 
specific aspects of the test behaviour, Clock for Test – dealing with time constraints, test 
case timer actions and clocks, finally Simulation Test Data – for supplying continuous 
test data. It re-uses also some concepts provided within the SL meta-model (i.e. Model 
meta-class or blocks of type Model Verification). The root meta-class is the test model 
inheriting from and applying to the model meta-class. The test architecture concepts are 
related to the organization and realization of a set of related test cases. These include test 
context meta-class, which consist of one or more related test cases. The verdict of a test 
case is assigned by an arbiter. There is a default arbitration algorithm ordering the 
verdicts according to the hierarchy of their types. Similarly, test behaviour concepts 
describe the behaviour of the test cases that are defined within a test context. Associated 
with test cases are test objectives, which describe the capabilities the test case is 
supposed to validate. Test cases consist of behaviour, which includes validation actions. 
Validation actions update the verdict of a test case. They are created as user-defined 
blocks with Matlab functions behind them yet. Log actions, which write information 
about the tests are represented by an attribute (logSignalData) of a connection line called 
signal. Behavioural concepts also include the verdicts that are used to define the test case 
outcomes. 
Simulink Test meta-model depends on the SL meta-model, while two additional meta-
models, described in the next subsection, depend on the SLTest meta-model.  
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2.3 Additional Meta-models Overview 

The additional Test Directive (TestDirective) and Environment Test Directive 
(EnvTestDirective) meta-models govern information gained from the test requirements 
and safety-critical requirements, respectively. TestDirective models are used only to 
refine the transformations from system model to test model according to the 
requirements or adding some implicit statements enhancing the mapping rules. Whereas 
EnvTestDirective models provide data on situations, when critical variables exceed/don’t 
reach their defined values, some dangerous data ranges are achieved, unexpected 
situations or additional interference actions from the environment occur. These 
additional data must be treated as test data and enrich/refine the tests appropriately.
The proposed EnvTestDirective meta-model is developed using safety-critical 
requirements analysis. It gives the semantics overview and is defined in different 
packages with concept structures for EnvTestDirModel, Environment Noise, Critical 
Data, etc. It re-uses, similarly to the other test meta-models given in this paper, concepts 
provided within the SL meta-model (i.e. Model meta-class), but also SLTest meta-model 
(i.e. package containing Simulation Data). 

3 Transformation on the Base of an Example

In this section, the example of transformations from a simple system model to test 
models representing executable test cases is depicted. Additionally, a model providing 
interferences from the environment is introduced. 
The test objectives are connected with the definition of the functionality belonging to the 
validation actions. These are: checking of the quality of signals (continuous and 
discrete), looking for timeouts and matching of the test requirements with test model 
elements.  
Our example model is restricted to two levels hierarchy. More complicated designs 
(including closed loops models) might cause additional problems or demand constraints 
for the transformation rules. It is also assumed that an environment test directive model
is previously delivered as a Simulink design. 
Some of the general transformation rules on the meta-models level used for the example 
are given below and explained after that:  

pre: SystemModel::Element(n)  TestModel::Element(n) 
1.SystemModel::Subsystem  TestModel::TestComponent 
  || SystemModel::Subsystem  TestModel::SUT 
2.SystemModel::Number(Subsystem)  TestModel::Number(TestModel) 
3.SystemModel::Number(Subsystem)  TestModel::Number(TestContext) 

if (!SUT) { 
4.SystemModel::Block.Type(Inport) TestModel::Block.Type(UserDefinedFun     
  ctions.StartPathTestCaseTimer) 
  && TestModel::PathTestCaseTimer.Value==[t(expectedExecution)+t(delay)] 
5.SystemModel::Block.Type(Outport)  TestModel::Block.Type(UserDefinedFun       
  ctions.StopPathTestCaseTimer) 
6.SystemModel::Block.Type(Outport)  TestModel::Block.Type(UserDefinedFun  
  ctions.ValidationAction) 
7.SystemModel::Block.Type(Outport)  TestModel::Block.Type(Sinks.Scope) 
8.SystemModel::EnvTDModel TestModel::Block.Type(UserDefinedFunctions.     
  ValidationAction)} 
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3.1 Transformations from System Model to Test Models 

Figure 2 presents a simple Simulink system model1, which is to be converted into a set of 
test models. Continuous signal no. 1 coming from the sensor is flowing through a line
from the block of type Inport to the block typed by Demux. Then the signal is split going 
to the block typed by Integrator on the one side and to the block typed by Gain on the 
other side. After that the Integrator’s activity starts and the resulting signal becomes to 
be continuous signal no. 2 and is lead using the line connection to the block typed by a 
subsystem. The functions called inside the subsystem give continuous signal no. 3, which 
is introduced into the block typed by Outport – a link to the potential actuator. A similar 
procedure applies to the other paths in the model.  

Figure 2: Simulink System Model

Let us consider a testing scenario of the given model. Firstly the structure of the system 
model is adopted to the test model (rule pre). Afterwards, test architecture artefacts are 
added. In Figure 3 Simulink test model derived from the system is shown. It deals with 
the situation when Subsystem1 is the SUT (rule 1). In another scenario the Subsystem2 
could be treated as SUT, letting all the other subsystems on this level be a test
component. Each subsystem which is not empty is the potential candidate to be the SUT.
That is why the test contexts define all the possible combinations of SUT and test
components with the rotating SUT role assignment. Test contexts have no explicit 
notation and each separate test context is expressed as a separate test model (rule 3).
Hence, there are two instances of such test models for the considered example (rule 2).
The next transformation step is to add the other test artefacts expressing behaviour to the 
test model. Two types of test cases are distinguished: block test case and path test case.
Additionally, path test case timer actions, clocks – giving the simulation time and 
validation actions are attached.  
Time measurement is used to assure proper termination of test cases [DS04] as well as 
appropriate duration of block execution. In order to assure a proper termination of a path 
test case, a path test case timer is started at the beginning of a path test case. Its duration 
is chosen to be slightly longer (tPTcT = texpected execution + tdelay) then the expected execution 
time of the test case (rule 4, 5). At the end of each possible test sequence, the 
considered timer is stopped. A verdict value expressing the incorrect behaviour is 
generated when the path test case timer expires. For each path describing model 
behaviour in the diagram of Figure 3  a timer is started at the beginning and stopped at 
the end of it. Simulink doesn’t support such path timer actions, thus additional user-
defined blocks delivering those functionalities must be still created. Further on, 
validation action is applied. Validation actions should update the verdict of a test case.

                                                          
1 Words written using cursive represent the meta-classes from the given meta-models, respectively. 
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They are created as user-defined blocks. There are two kinds of validation actions – path 
validation action and block validation action. Path validation action applies to the path 
test case. It checks for timing out of the timer and updates the verdict according to the 
other verdicts established on the path (rule 6, 7, 8).

Figure 3: Derived Simulink Test Model for Subsystem1 being the SUT

Following our transformation, all the blocks present at the model or subsystem level in 
the considered system model example are handled. For such a particular block, a new 
subsystem in the test model is created so as to establish a so called block test case.
In every reactive system, the response time of an event should be restricted by a timer 
[DS04]. For this purpose, a clock is assigned to each block to measure its execution time. 
If the response is received within its expected duration, the verdict is set to the value 
expressing correct behaviour. Otherwise an alternative behaviour, i.e. default behaviour, 
is activated. Figure 4 presents insights of a block test case for Integrator subsystem.
Herein a clock measuring the simulation time is attached to the block of type Integrator.

Figure 4: Derived Block Test Case for Integrator Encapsulated in a Subsystem

Block validation action is provided at the end of each block test case. Additionally to the 
block test case, a reference model for block test case is build. It includes almost all the 
elements as the former test case and is encapsulated in a subsystem, however in a 
separate model (see Figure 5). 

Figure 5: Derived Subsystem Put in Reference Model for Block Test Case

Block validation action should compare dynamically those two subsystems’ outputs
(block test case subsystem and subsystem, which is put in the reference model for block 
test case) after their simulation. Reference model for block test case is executed without 
any interferences, while block test case is executed having applied EnvTestDirective 
model. The results of the considered block validation action can be additionally observed 
by the application of the Scope block.
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Reference model for block test case (Figure 5) for the considered block test case (Figure 
4) has similar structure as the former one. However during simulation no interference 
data from the environment, no delays and no additional data from the requirements are 
provided. This enables to get both the pure and the real behaviour of the considered test 
case, so as to compare them and conclude about the verdict.  
Simulation input data are needed for the functions continuum dynamic comparison. Data 
are derived from equivalence classes of their types and additional values given in the 
specification. This idea bases on CTM/ES method [CFS04] discussed in the next 
sections and is not concerned for the example yet.  
The block typed by validation action must be intelligent enough to assure that some 
slight discrepancies between the pure and the real results are permissible on the one side, 
however safety critical requirements mustn’t be ignored on the other side. Requirements 
are delivered by application of EnvTestDirective model, which enables to distinguish 
between soft and hard real-time requirements.  
Additionally to the validation actions, verdict types and their hierarchy should be 
discussed. One of the proposals is to use fit/misfit for the arbitration of test purposes 
coming from the system requirements, pass/fail for the functional aspects, in-time/out-
of-time for checking the duration and continuous-in-time/discrete-in-time for the time 
continuous aspects. Moreover, the interactions between the verdict types must be also 
considered in the future. 

3.2 Additional Environmental Test Directive Models Derived from the Specification 

Let us imagine an automatic control unit being activated in a given system. The safety-
critical requirement specifies the following: Always when any action from the 
environment (implied by a user or caused by other external action (i.e. external 
behaviour or changed value of some variable)) occurs, the control unit should be 
switched off/deactivated.
The situation is modelled in Figure 6. On the meta-model level all the elements are put 
in the EnvTestDirective model meta-class, which inherits directly from SL model meta-
class. The external action is represented by a block of type Inport (for SL meta-model), 
but also by critical action (for EnvTestDirective meta-model). Inport is connected via a 
line carrying the signal value with another block of type Relational Operator. Block of 
type Constant delivers the 0.0 value additionally to the action so as to let the operator 
compare the signal value with 0.0. If the external action value is bigger then 0.0, a block
of type trigger is activated shutting off the control unit (a subsystem).  Comparison of the 
two values and the result are encapsulated by if meta-class. The resulting action becomes 
to be the body. Finally, the deactivation of the control unit is a critical action.

Figure 6: Environment Test Directive Model
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This example shows that application of an EnvTestDirective model on an existing SL 
model, system or subsystem implies the validation action to be sensitive on the changes 
coming from the system outside. 
As already mentioned, the transformation rules for the example in this paper are applied 
only manually. Due to missing technology, the rules implementation is not applicable for 
the large scale projects yet. However, further investigations on the subject promise that 
the presented solution may raise a lot of attention in the middle future.  

4 Related Work

Several efforts have been undertaken to establish an approach to model-based test 
generation for embedded systems. Research and industrial work is being continuously 
developed. Algorithms have been defined to derive tests from formal system 
specification given in various notations.  
One of the approaches is Time Partitioning Testing (TPT) [Leh00]. It is an approach for 
testing the dynamic functional behaviour of embedded systems. It supports the selection 
and documentation of test data on the semantic basis of so-called testlets and the 
syntactic techniques Direct Definition, Time Partitioning and Data Partitioning which 
are used to build testlets. Testlets facilitate an exact description of test data and 
guarantee the automation of test execution and test evaluation. The concepts of TPT 
correspond mainly to Environment Test Directive models specified using the system and 
test requirements in the approach presented in this paper.  
Data Partitioning is strictly related to the next tool, called MTest [CFS04] and its 
Classification Tree Method for Embedded Systems (CTM/ES). This method contributes 
to testing of embedded systems very much. Using an interface description, which can be 
based on the specification and/or an executable model of the software, test scenarios can 
be derived systematically and described in a graphical way so as to provide the user with 
visual information about test coverage [Con04]. In our work, the data derivation from 
the equivalence classes of their types is provided with Simulink Test models, whereas 
catching of the interferences from the environment is given by EnvTestDirective models. 
Additionally, intermediate data flowing along the path are also treated as interfaces 
between different components (subsystems).  
A similar approach to CTM/ES test data retrieval is realised by Reactis tool [Reactis]. 
The tests may be run on the models themselves to study and revise model behaviour. 
They may be applied to source-code implementations of models to ensure conformance 
with model behaviour. Also back-to-back tests are supported. 
Matlab Automated Testing Tool (MATT) [Hen00] enables to create custom test data for 
model simulations or executables. Here basic functional tests on model level may be 
created and executed. Those issues are covered by EnvTestDirective models given in 
this paper.  
Such tools, like EmbeddedValidator [BBS04] are considered for the discussed approach, 
as they validate and verify the model. The model checking technology is automatic and 
complete in a mathematical sense, meaning that it can detect every logical design flaw 
and error in the model being validated. However, it is assumed that model checkers are 
used before test generation.  
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MLIB/MTRACE and ControlDesk [dSpac99] tools make it possible to monitor, display 
and change the variables while the simulation is running. This is a good technological 
hint, how to apply the EnvTest Directive models onto SL test models.  
Moreover, Simulink Test meta-model designed for embedded systems has been inspired 
by two factors: existence of UML 2.0 Testing Profile [U2TP04] for object-oriented 
software development as well as by MDA-driven testing [ZDS+05]. They are both 
related to this research. 

5 Outlook and Future Work 

The aim of this paper is to demonstrate that it is worth to apply MDA artefacts for 
Simulink models and their testing. For this purpose Simulink, Simulink Test, 
Environment Test Directive and Test Directive meta-models are introduced and 
presented in brief. An example of retrieving the executable tests from Simulink models 
is provided. Some simple transformation rules are depicted. Corresponding meta-classes 
are assigned to the elements of the models. Further on, work related to the subject 
regarding automotive domain is given. Finally, conclusions are taken and further work 
challenges are outlined. 
All the meta-models need a lot of improvement. Their structure is still in the 
development phase in the ongoing research projects. The tools adapters must be built to 
be able to interpret the Simulink models and store them in the repository at the one side, 
as well as to retrieve the generated Simulink Test models from the repository and expose 
them correctly in Simulink at the other side. Derivation of executable test models is 
possible by applying some modelling restrictions. They should be collected in the future. 
Further transformation rules have to be formalised and implemented. Some tools [IKV], 
[EMF] already enable transformations between models on the meta-model level. One of 
the environments being often used to demonstrate the feasibility of transformations is 
Eclipse [Eclipse] with its Eclipse Modelling Framework (EMF) plug-in. The meta-
models can be defined by Rational Rose tool in UML. The EMF generator can create a 
corresponding set of Java implementation classes from such a Rose model. The mapping 
rules can be realised via EMF Java API. The transformations can generate objects within 
a Simulink Test meta-model, which could enable the execution of the tests directly in 
Simulink. The transformation rules could be also formalized using 
Query/View/Transformation (QVT) [QVT04] language. However the tools, like Borland 
Together [BT06] or Tefkat [SL04], both enabling QVT, are still very limited and 
incomplete to perform such formalism.  
Continuing research will focus also on formal models of computation [LN04] found 
behind the presented models to let define formally-proven transformation rules for some 
complicated cases. Moreover, tool-independent ideas for meta-modelling of hybrid real-
time systems will be considered. This would give a generic view on the development and 
testing in this area, taking into account real-time, continuous signals. Any other tools like 
SCADE [BDK05] used for embedded software development could be enriched with 
such generic test automation ideas. Additionally, requirements-driven automatic test 
information retrieval in the context of EnvTestDirective models must be investigated 
(i.e. by help of temporal logic). Also a facility to manage the obtained test results should 
be provided in the finishing phase of the work.  
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Last, but not least the autonomic communication paradigms could contribute to the self-
organisation of the system model enabling the automatic generation of the executable 
test models. Simulink model elements could interpret themselves and re-build them so as 
to achieve the expected goals. Furthermore, test-driven improvements of the system 
under test may be established. For example, when the variable value is reaching a critical 
range, the system would organise itself to avoid the dangerous value by usage of some 
intelligent rules, that have to be defined.  
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